

The network of Horizon Europe Cluster 5 National Contact Point.

Novel catalysts for hydrogen evolution reaction

RNDr. Magdalena Streckova, PhD. mstreckova@saske.sk https://websrv.saske.sk/imr/

European Hydrogen Week 2024 GREENET Pitch session TechForum, 19th November 2024

The GREENET project has received funding from the EU Horizon Europe programme under Grant Agreement No 101069604

Slovak Academy of Science

Watsonova 47, Košice

- established in 1955, nearly 70 years of experiences in materials science and engineering
- advanced powder technologies
- modern steels
- modern construction and functional ceramics
- composite materials
- biomaterials
- catalytic materials for energetics

Collaborations

FACULTY OF SCIENCE PAVOL JOZEF SAFARIK UNIVERZITY IN KOSICE

TECHNICAL UNIVERSITY IN KOSICE FACULTY OF MATERIALS, METALLURGY AND RECYCLING

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Infrastructure of IMR SAS for H₂ catalysts preparation

SEM/FIB – CrossBeam system AURIGA Compact

Nanospider NS Lab 200 for fiber production

XRD diffractometer Philips X`Pert Pro with high temperature chamber up to 1600 °C

DTA-DSC-TG analyzer Jupiter STA 449-F1

Potentiostat Vionic with RDE

Transmission electron microscope JEOL JEM-2100F

The goal of the research:

- * Production of hydrogen by water electrolysis as an alternative fuel for advanced electrolyzers and fuel cells
- * Preparation of electrocatalysts based on non-noble metals in the different structures and morphologies as the main component for the membrane electrode assembly in electrolyzers
- * **Key task:** Development of bifunctional electrode materials for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with emphasis on low costs and high efficiency

Results

Advantageous electrochemical parameters

NiCoP fibers as electrocatalyst for HER

- Low overpotential
- Low Tafel slopes and high exchange current density *j*₀
- Long-term stability at high currents
- High faradaic efficiency
- High ECSA

.

0.3

Low resistance (EIS analysis)

NiCoP fibres	Drying in air (°C)	Sintering in air (°C)	Sintering in Ar/H ₂ (°C)
F7	270	700	100/700
F8	270	800	100/700
F9	270	900	100/700
F10	270	1000	100/700
F11	270	1100	100/700
P9	270	900	100/900 lit

Acknowledgement:

Thank you for your attention

This work was financially funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V04-00109

[RECOVERY AND RESILIENCE] PLAN

The grant of the Slovak Research and Development Agency provided under the contract No. APVV-20-0299 and by the grant of the Slovak Academy of Sciences and The Ministry of Education, Science, Research, and Sport of the Slovak Republic provided under the contracts No. VEGA 2/0027/23.

